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A numerical method for a nonlinear inversion problem for the 2D wave equation
with a potential is discussed. In order to avoid the ill-posedness, we substitute a
coupled system of one-way wave equations for the original wave equation. An iter-
ative algorithm is constructed to improve the accuracy of the inversion. Numerical
experiments are performed on several examples to examine the effectiveness of this
method. c© 1998 Academic Press
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1. INTRODUCTION

In this paper, we describe a numerical nonlinear inversion method for recovering the
potentialv(x, z) in the two-dimensional plasma wave equation from the boundary response
of the half-planez> 0 excited by an impulsive line source. That is, we consider[

∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2
+ v(x, z)

]
p(t, x, z) = 0, z> 0, t > 0,

p(0, x, z) = ∂

∂t
p(0, x, z) = 0, z> 0,

p(t, x, 0) = δ(t), t ≥ 0,

∂

∂z
p(t, x, 0) = h(t, x), t ≥ 0,

(1.1)
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and seek to determine the unknown potentialv(x, z) from the responseh(t, x). This problem
has several applications. We refer readers to the discussion in [22] for further references.
What motivates us to study this problem is its application to petroleum prospecting in
reconstructing an acoustic medium with density and wave speed from surface measurements
of the displacement response to a line source. In one dimension, the corresponding inverse
problem is well-posed and has been investigated both theoretically and numerically (see
[17, 12, 3, 4, 11, 25, 19]). But in higher dimensions, like inverse problems of other multi-
dimensional hyperbolic equations, very little is known. The main difficulties lie in the
nonlinearity and ill-posedness.

Due to the stimulation of applications in many fields, such as seismic prospecting, medical
imaging, nondestructive testing, radar detection, etc., inverse problems in multidimensional
wave equations have attracted remarkable research interests in past decades. Various meth-
ods based on linearization or optimization (for example, [18, 6]) are discussed and devel-
oped; however, good directly nonlinear inversion methods are still under development. We
refer readers to the survey papers [1, 10]. In [21], Yagle and Levy suggested a layer-stripping
method for the inverse problem (1.1) and in [22] Yagle and Raadhakrishnan presented the
results of some numerical experiments. Their main idea is to regularize the ill-posed prob-
lem by cutting the lateral wave numbers. In contrast, our approach for regularizing the
problem is based on the wave splitting method developed by Zhang in [23, 24, 27]. By
splitting the wave field into upgoing wavesU (t, x, z) and downgoing wavesD(t, x, z)
which are governed by pseudo-differential equations, the nonradiative wave, which causes
the ill-posedness, is naturally regularized. As proved in [23], the derived one-way wave
equations are well-posed when the reference spatial direction is treated as the evolution
direction. Therefore, using the relation on the characteristic

U (z+, x, z) = −1

2
v(x, z), (1.2)

derived by causality,v(x, z) can be stably solved layer by layer as a nonlinear initial value
problem in thez direction.

Since the early seventies, one-way wave equations have been applied to geophysical
exploration. Usually, one considers the response as the primary reflection and uses the de-
coupled upgoing one-way wave equation to extrapolate the upgoing wave field from the
response recorded on the surface, downward towards the interior of the earth. Additionally,
this extrapolation picks out the upgoing wave at each point at the arrival time of the down-
going wave to image the underground structure. Such a technique is called migration ([16]).
In migration the multireflection is considered to be noise. The main difference between the
inversion method discussed in this paper and the migration method is that all reflections, not
only the primary reflection, but also the multiple reflections, are taken into consideration.
So migration is regarded as a linearized inversion, which can also be considered as the first
order approximation of the full nonlinear inversion developed in this paper.

This paper can be regarded as the continuation of the work in [13, 28]. Some modifications
are made to the derived one-way wave equations and their initial and boundary conditions,
high-order approximations are used in the numerical inversion and an iterative inversion
algorithm is constructed. With these modifications, the numerical results are remarkably
improved.

This paper is organized as follows. In Section 2, we introduce the wave-splitting tech-
nique and derive the one-way wave equations and their approximations for the propagation
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operator. In Section 3, we discuss the inverse problem for the system of coupled one-way
wave equations and their initial and boundary conditions. Unlike the original inverse prob-
lem, it is well-posed and can be solved by the layer stripping method. In Section 4, we
introduce the finite difference schemes and the numerical implementation for the inverse
problem discussed in Section 3. In Section 5, we construct an iterative algorithm to improve
the inversion accuracy. Finally, we present several numerical examples in Section 6.

2. SPLITTING OF WAVE FIELDS

Splitting of wave fields is not new, many researchers have studied it with various ap-
proaches. Westonet al. worked on splitting and derived a coupled differential-integral
system [20]. Fishman studied splitting by the Weyl pseudo-differential operator [9]. Our
approach to wave splitting is close to the method proposed by Engquist and Majda in [8]
which was originally used to deal with the absorbing boundary conditions.

First, we consider the two-dimensional propagation operator

∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2
, (2.1)

with dispersion relation

ikz = ±ikt

√
1− k2

x

/
k2

t . (2.2)

We rewrite the operator (2.1) as

∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2
=
(
3+ ∂

∂z

)(
3− ∂

∂z

)
. (2.3)

Here,3 is called a square-root operator and can be regarded as a pseudo-differential operator
with the symbol

λ = ikt

√
1− k2

x

/
k2

t . (2.4)

We seek an approximation operator3n to3. For the sake of simplicity and clearness, we
ignore the rigorous discussion of pseudo-differential operators in the following deduction
and will come back to explain the meaning of the operator3.

In Appendix A, we prove the following proposition.

PROPOSITION1. For all the complex numbersξ /∈ (−∞,−1)∪ (1,+∞), the following
integral equality

√
1− ξ2 = 1− ξ

2

π

∫ 1

−1

√
1− s2

1− ξs
ds (2.5)

is valid.

Using Eq. (2.5), the symbolλ can be expressed as

λ = ikt − i

π

∫ 1

−1

√
1− s2

k2
x

kt − skx
ds when

∣∣∣∣kx

kt

∣∣∣∣ < 1. (2.6)
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For realr , define

I (r ) := 1

r

[
1−

√
1− r 2

]
. (2.7)

Then by the definition (2.4) ofλ, the functionI (r ) and symbolλ have the relation

λ = ikt − ikx I

(
kx

kt

)
. (2.8)

By discretizing (2.5), it is easy to see that when|r |< 1, I (r ) can be approximated by the
rational functionIn(r ),

In(r ) =
n∑

l=1

an,l r

1− αn,l r
, (2.9)

where

an,l = 1

n+ 1
sin2

(
lπ

n+ 1

)
, (2.10)

αn,l = cos

(
lπ

n+ 1

)
, (2.11)

and the approximation order is

I (r )− In(r ) = O(r 2n+1). (2.12)

See [23] for a rigorous proof. Combining (2.8) and (2.9), we get the approximations to the
symbolλ,

λn := ikt − ikx In

(
kx

kt

)
= ikt − ik2

x

n∑
l=1

an,l

kt − αn,l kx
. (2.13)

Using the correspondence

ikt ↔ ∂

∂t
, ikx ↔ ∂

∂x
, (2.14)

returning to thet-x domain, and using (2.6), the square-root operator3 can be written as

3 = ∂

∂t
− R, (2.15)

whereI is the identity operator,R is a pseudo-differential operator defined as

R[ p(t, x, z)] := 1

π

∫ 1

−1

√
1− s2 q(s; t, x, z) ds, (2.16)

and the auxiliary functionq(s; t, x, z) satisfies(
∂

∂t
− s

∂

∂x

)
q(s; t, x, z) = ∂2

∂x2
p(t, x, z). (2.17)
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If we defineU andD as

U :=
[
∂

∂t
− R+ ∂

∂z

]
p, (2.18)

D :=
[
∂

∂t
− R− ∂

∂z

]
p, (2.19)

respectively, then the wave equation(
∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2

)
p(t, x, z) = 0 (2.20)

is replaced by the system of one-way wave equations,(
∂

∂t
− ∂

∂z

)
U − 1

π

∫ 1

−1

√
1− s2 qU (s; t, x, z) ds= 0,(

∂

∂t
+ ∂

∂z

)
D − 1

π

∫ 1

−1

√
1− s2 qD(s; t, x, z) ds= 0, (2.21)

∂

∂z
p = U − D

2
,

whereqU andqD satisfy(
∂

∂t
− s

∂

∂x

)(
qU (s; t, x, z)
qD(s; t, x, z)

)
= ∂2

∂x2

(
U (t, x, z)
D(t, x, z)

)
. (2.22)

The planar wavesf (t − (αz+βx)) and their superpositions are solutions of the wave
equation (2.20) iff is twice differentiable, andα2+β2= 1. It is easy to verify that for
all α≤ 0 (α≥ 0), the planar wavesf (t − (αz+βx)) and their superpositions satisfy the
one-way wave equation forU (D) in (2.21). In geophysical applications, the variablez is
used to represent the depth under the surface of the earth, so we designateU (t, x, z) the
upgoing wave andD(t, x, z) the downgoing wave.

One question naturally arises for the splitting wave equation system (2.21): In what sense
does it simulate the original equation (2.20)? First, such wave splitting is accurate for the
one-dimensional case ([25]). Second, in [27], the author proved that the coupled system
(2.21) and the wave equation (2.20) are equivalent in the sense of high-frequency approx-
imation (geometrical optic approximation). Both have the same eikonal equation and the
same first transport equation; that is, system (2.21) preserves the kinetic and dynamic prop-
erties of the original wave equation. Third, due to Eq. (2.6), such wave splitting is only
valid for the radiative wave, where|kx/kt |< 1. For realkx, kt and|kx/kt |> 1,λ is taken to
be zero (see Remark 2). We remind readers that it is the nonradiative wave(|kx/kt |> 1)
which causes the ill-posedness in solving the spatial initial problem. Therefore by reformu-
lating the wave equation, we have actually regularized the problem.

Remark 1. In [27], the author obtained a general approximate splitting formulation for(
1

c(x, z)2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2

)
p = 0, (2.23)
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as (
1

c

∂

∂t
− ∂

∂z

)
U − 1

c

∂

∂t

[
1

π

∫ 1

−1

√
1− s2 qc

U (s; t, x, z) ds

]
+ cz

2c

[
D +U + qc

U (1; t, x, z)+ qc
D(1; t, x, z)

] = 0,(
1

c

∂

∂t
+ ∂

∂z

)
D − 1

c

∂

∂t

[
1

π

∫ 1

−1

√
1− s2 qc

D(s; t, x, z) ds

]
+ cz

2c

[
D +U + qc

U (1; t, x, z)+ qc
D(1; t, x, z)

] = 0,

(2.24)

whereqc
U andqc

D satisfy(
∂2

∂t2
− s2

(
c
∂

∂x

)2
)(

qc
U (s; t, x, z)

qc
D(s; t, x, z)

)
=
(

c
∂

∂x

)2(U (t, x, z)
D(t, x, z)

)
. (2.25)

The above discussion is also valid for splitting (2.24) even whenc(x, z) is piecewisely
smooth.

Remark 2. If we define

I (r ) := lim
ε→0

Re

(
r + εi
π

∫ 1

−1

√
1− s2

1− (r + εi )s ds

)
,

by Proposition 1, we have

λ := ikt − ikx I

(
kx

kt

)
=

 ikt

√
1− k2

x

k2
t
,
∣∣ kx

kt

∣∣ < 1,

0,
∣∣ kx

kt

∣∣ > 1.
(2.26)

Remark 3. In [29], we proved that ifp(t, x, z) is a solution of wave equation (2.20) with
L1 integrable initial time conditions, then the support of Fourier transform for its response
p̂(kt , kx, z= 0) must be contained inÄ={(kt , kx) : |kt | ≥ |kx|}; i.e., the response atz= 0
does not contain the nonradiative part. But for the variable coefficient wave equation (2.23)
or (1.1), such a conclusion is no longer true, and thus the splitting is incomplete.

In numerical computations, it is convenient to use the approximate splitting system instead
of system (2.21). From the approximate symbolλn defined by (2.13), we obtain(

∂

∂t
− ∂

∂z

)
U −

n∑
l=1

an,l qU (αn,l ; t, x, z) = 0,

(
∂

∂t
+ ∂

∂z

)
D −

n∑
l=1

an,l qD(αn,l ; t, x, z) = 0, (2.27)

∂

∂z
p = U − D

2
.

Unlike the original equation (2.20), thez-direction initial value problem for (2.27) is well-
posed; see [23] or [29].
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Remark 4. The first equation forU in (2.27) has been used in migration (see [24]).
The special cases forn= 1 andn= 2 are classical 15◦ ([5]) and 40◦ ([15] or [2]) migra-
tion equations which are widely used in seismic exploration. In general, one-way wave
equations (2.27) ared(n) degree equations, whered(n) is an increasing function ofn and
lim

n→∞d(n)= 90◦.

Remark 5. The wave splitting technique discussed here can be generalized to the three
spatial dimension wave operator. The symbol for the 3D square-root operator is

λ = ikt

√
1− (k2

x + k2
y

)/
k2

t . (2.28)

Using (2.5)

√
1− ξ2 = 1− ξ

2

π

∫ 1

−1

√
1− s2

1− ξs
ds= 1− ξ

2

π

∫ 1

−1

√
1− s2

1− ξ2s2
ds, (2.29)

λ can be expressed as

λ = ikt

(
1− k2

x + k2
y

π

∫ 1

−1

√
1− s2

k2
t −

(
k2

x + k2
y

)
s2

ds

)
, k2

x + k2
y < k2

t , (2.30)

and the the approximate symbolsλn are

λn = ikt

[
1−

n∑
l=1

an,l
(
k2

x + k2
y

)
k2

t − αn,l
(
k2

x + k2
y

)]. (2.31)

From (2.30) and (2.31), it is easy to derive the one-way wave equations and their approximate
equations for the 3D case.

3. INVERSE PROBLEM FOR THE SYSTEM OF COUPLED

ONE-WAY WAVE EQUATIONS

Applying the square-root operator introduced in Section 2, the inverse problem (1.1) can
be reformulated as(

∂

∂t
− ∂

∂z

)
U − 1

π

∫ 1

−1

√
1− s2 qU (s; t, x, z) ds+ vp = 0,(

∂

∂t
+ ∂

∂z

)
D − 1

π

∫ 1

−1

√
1− s2 qD(s; t, x, z) ds+ vp = 0,

∂

∂z
p = U − D

2
, (3.1)(

∂

∂t
− s

∂

∂x

)(
qU (s; t, x, z)
qD(s; t, x, z)

)
= ∂2

∂x2

(
U (t, x, z)
D(t, x, z)

)
,

U (t, x, 0) = −D(t, x, 0) = h(t, x),

p(t, x, 0) = δ(t).
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System (3.1) is nonlinear and coupled because of the termvp. In this system, all the multiple
reflections are taken into consideration. When the responseh(t, x) is small,D,U, p, andv
are also small. If we drop the high order termvp, system (3.1) is reduced to the linear and
decoupled system (2.21). The first equation of (2.21) is the basic upcoming one-way wave
equation, which is used in migration. So migration can be considered as the linearized first
order approximation of the full nonlinear inverse problem discussed in this section.

From propagation theory, theδ singularity will be propagated along the surfacet = z
which is the envelope of the characteristic cones with vertices on thex-axis. Singularity
propagation analysis for (3.1) (see [13] or [7]) yields the values ofU andD on t = z,

U (z+, x, z) = −1

2
v(x, z), (3.2)

qU (s; z+, x, z) = 0, (3.3)

and

D(z+, x, z) =
∫ z

0

[
∂2

∂t2
− v(x, ξ)

]
g(x, ξ)dξ − h(0+, x), (3.4)

qD(z+, x, z) = 0, (3.5)

where

g(x, z) = −1

2

∫ z

0
v(x, ξ)dξ.

Remark 1. For the original inverse problem (1.1), we can also obtain the following
conditions forp by singularity propagation analysis, which were used to construct the layer-
stripping algorithm in [22],(

∂

∂t
+ ∂

∂z

)
p(t = z+, x, z) = −v(x, z)

2
,(

∂

∂t
− ∂

∂z

)
p(t = z+, x, z) =

∫ z

0

[
∂2

∂t2
− v(x, ξ)

]
g(x, ξ)dξ − h(0+, x).

Similar to (2.27), we use the approximate coupled system in numerical computations,

(
∂

∂t
− ∂

∂z

)
U −

n∑
l=1

an,l qU (αn,l )+ vp = 0,

(
∂

∂t
+ ∂

∂z

)
D −

n∑
l=1

an,l qD(αn,l )+ vp = 0,

(3.6)
∂

∂z
p = U − D

2
,(

∂

∂t
− αn,l

∂

∂x

)(
qU (αn,l ; t, x, z)

qD(αn,l ; t, x, z)

)
= ∂2

∂x2

(
U (t, x, z)

D(t, x, z)

)
.

In order to solve (3.6), initial and boundary conditions must be added. According to the
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original problem (1.1), at the surfacez= 0 for t > 0,

U (t, x, 0) = h(t, x),

D(t, x, 0) = −h(t, x), for t > 0, (3.7)

p(t, x, 0) = 0.

Along t = z, we use the results of singularity propagation analysis forD andqD

D(z, x, z) =
∫ z

0

[
∂2

∂t2
− v(x, ξ)

]
g(x, ξ)dξ − h(0+, x),

(3.8)
qD(αn,l , t, x, z) = 0, l = 1, . . . ,n.

For the sake of stability and closeness, some kind of large-time conditions must be proposed
for U andqU , for example, for largeT

U (T, x, z) = 0,
(3.9)

qU (αn,l ; T, x, z) = 0, l = 1, . . . ,n.

Finally, we use the following relationship to reconstruct the potentialv(x, z):

v(x, z) = −2U (z, x, z). (3.10)

The inverse problem for the one-way wave equation system (3.6)–(3.10) can be solved in
the domainÄ={(t, x, z) : x ∈ R, t ≥ z> 0} by the well-known layer-stripping algorithm.
We discuss its numerical implementation in the next section.

Remark 2. Among all the conditions proposed above, the large-time conditions (3.9) do
not seem to be very reasonable. Whenv(x, z) is compactly supported, the upgoing waveU
satisfies

lim
t→∞U (t, x, z) = 0. (3.11)

The first condition in (3.9) can be regarded as an approximation to (3.11) whenT is very
large. In practice,T cannot be very large; otherwise, a long record of the responseh(t, x) is
required and the computational effort increases. Numerical tests tell us that the large-time
conditions affect the accuracy of inversion and need to be further studied. In numerical
inversions, we use the approximate conditions instead of (3.9):

U (T, x, z) = −D(T, x, z),
(3.12)

qU (αn,l ; T, x, z) = −qD(αn,l ; T, x, z), l = 1, . . . ,n.

From conditions (3.7), (3.12) is valid atz= 0 and can be regarded as approximate conditions
whenz> 0. From numerical experiments, it seems that such conditions work well even when
T is not very large (see the numerical examples in Section 6).

Remark 3. The inversion method discussed in this paper can be easily generalized to
the 3D case; see Remark 5 in Section 2.
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Remark 4. For the inverse acoustical wave problem with variable velocity

[
1

c(x, z)2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2

]
p(t, x, z) = 0, z> 0, t > 0,

p(0, x, z) = ∂

∂t
p(0, x, z) = 0, z> 0,

p(t, x, 0) = δ(t), t ≥ 0,

∂

∂z
p(t, x, 0) = h(t, x), t ≥ 0;

(3.13)

a similar inversion method was suggested in [26].

4. NUMERICAL IMPLEMENTATION OF THE INVERSE PROBLEM FOR THE

SYSTEM OF COUPLED ONE-WAY WAVE EQUATIONS

In this section we describe the difference scheme for the 2D layer-stripping algorithm
for the solution of the inverse problem (3.6)–(3.8), (3.12), and (3.10).

Let Ä be the domainÄ={(t, x, z) | t ≥ z}, and coverÄ by the grid{(ti , xj , zk) | ti =
i ·1t, xj = j ·1x, zk= k ·1z,1t =1z=1, on grid pointsj + k= even number}, shown
in Fig. 1. Denotingf i

j,k= f (ti , xj , zk), and discretizing equations (3.6) along the charac-
teristic directiont + z= c1, t − z= c2, we obtain

U j
i,k −U j

i−1,k+1

1
−

n∑
l=1

an,l (qU (αn,l ))
j
i−1/2,k+1/2+ v j

k+1/2 pj
i−1/2,k+1/2 = 0, (4.1)

D j
i,k − D j

i−1,k−1

1
−

n∑
l=1

an,l (qD(αn,l ))
j
i−1/2,k−1/2+ v j

k−1/2 pj
i−1/2,k−1/2 = 0, (4.2)

FIG. 1. The grid used in numerical computation.
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pj
i,k − pj

i,k−1

1
= 1

4

(
U j

i,k−1+U j
i,k − D j

i,k−1− D j
i,k

)
, (4.3)

(qU (αn,l ))
j
i+3/2,k+1/2− (qU (αn,l ))

j
i−1/2,k+1/2

21

−αn,l
1x

41x

(
qU (αn,l ))

j
i+3/2,k+1/2+ (qU (αn,l ))

j
i−1/2,k+1/2

)
= 12

x

41x2

(
U j

i,k +U j
i−1,k+1+U j

i+2,k +U j
i+1,k+1

)
, (4.4)

(qD(αn,l ))
j
i−1/2,k−1/2− (qD(αn,l ))

j
i−5/2,k−1/2

21

−αn,l
1x

41x

(
qD(αn,l ))

j
i−1/2,k−1/2+ (qD(αn,l ))

j
i−5/2,k−1/2

)
= 12

x

41x2

(
D j

i,k + D j
i−1,k−1+ D j

i−2,k + D j
i−3,k−1

)
, (4.5)

where

1x f (x) = f (x +1x)− f (x −1x), (4.6)

12
x f (x) = f (x +1x)− 2 f (x)+ f (x −1x), (4.7)

v
j
k+1/2 =

v
j
k+1+ v j

k

2
, (4.8)

pj
i,k−1/2 =

pj
i,k + pj

i,k−1

2
. (4.9)

The above difference schemes, (4.1)–(4.5), are implicit and have second-order truncation
errors. To simplify the algorithm, we first use the explicit difference schemes for the auxiliary
functionsqU (αn,l ) andqD(αn,l ):

(qU (αn,l ))
j
i+3/2,k+1/2− (qU (αn,l ))

j
i−1/2,k+1/2

21
− αn,l

1x

21x
qU (αn,l ))

j
i+3/2,k+1/2

= 12
x

41x2

(
U j

i,k +U j
i−1,k+1+U j

i+2,k +U j
i+1,k+1

)
, (4.10)

(qD(αn,l ))
j
i−1/2,k−1/2− (qD(αn,l ))

j
i−5/2,k−1/2

21
− αn,l

1x

21x
qD(αn,l ))

j
i−5/2,k−1/2

= 12
x

41x2

(
D j

i,k + D j
i−1,k−1+ D j

i−2,k + D j
i−3,k−1

)
. (4.11)

Solving forqU (αn,l ))
j
i+1/2,k+1/2,qD(αn,l ))

j
i−1/2,k+1/2 from the above equations and inserting
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them into (4.1) and (4.2), we get

(
1− 12

41x2
12

x

)
U j

i,k

=
(

1+ 12

41x2
12

x

)
U j

i+1,k−1+
12

41x2
12

x

(
U j

i+3,k−1+U j
i+2,k

)+1z · v j
k−1/2 pj

i+1/2,k−1/2

−1z ·
n∑

l=1

an,l

(
1− αn,l

1

1x
1x

)
(qU (αn,l ))

j
i+5/2,k−1/2, (4.12)

(
1− 12

41x2
12

x

)
D j

i,k

=
(

1+ 12

41x2
12

x

)
D j

i−1,k−1+
12

41x2
12

x

(
D j

i−2,k + D j
i−3,k−1

)−1z · v j
k−1/2 pj

i−1/2,k−1/2

+1z ·
n∑

l=1

an,l

(
1+ αn,l

1

1x
1x

)
(qU (αn,l ))

j
i−5/2,k−1/2. (4.13)

The numerical computation begins at the surfacez= 0 and advances in the positive
z-direction. At each layerz, D andqD are solved fromt = z to t = T with the initial-time
conditions (3.8),U andqU are solved fromt = T to t = z with the large-time conditions
(3.9) or (3.12). The details of the algorithm are as follows:

Step1.
Whenk = 0:
ComputeU, D, p atk = 0 by conditions (3.7);
Computev j

0 = −2U j
0,0;

Step2.
Whenk > 0, computeU, D,qU ,qD, p andv at this layer:

a. Prediction
Use first-order scheme

pj
i,k − pj

i,k−1

1
= U j

i,k−1− D j
i,k−1

2
, (4.14)

to pre-estimatepj
i,k;

Let v j
k−1/2 = v j

k−1;
ComputeU andqU by (4.12) and (4.4) with conditions (3.9) or (3.12);
ComputeD andqD by (4.13) and (4.5) with conditions (3.8);

b. Correction
Let v j

k =−2U j
k,k, v

j
k−1/2= (v j

k−1+ v j
k )/2;

Computepj
i,k by (4.3);

ComputeU andqU by (4.1) and (4.4) with conditions (3.9);
ComputeD andqD by (4.2) and (4.5) with conditions (3.8);
Use the newU j

k,k to correctv j
k =−2U j

k,k;
Step3.

Let k= k+ 1, repeat step 2 until a predetermined depthZ.



            

POTENTIAL-INVERSION OF 2D WAVE EQUATION 497

The above algorithm has second-order accuracy.U, D, andp are solved at integer grid
points(i, k) andqU andqD are solved at half integer grid points(i + 1

2, k+ 1
2).

In the numerical implementation, we find that the above inversion algorithm for the
one-way wave equations has several advantages. First, the derived coupled one-way wave
equations have definite physical meanings. Second, for anyn, all of the high order approx-
imate equations forqU andqD are first-order partial differential equations. This avoids the
difficulty of solving higher order partial differential equations which is required by other
wave splitting algorithms. Third, all of the equations for the auxiliary functionsqU (αn,l ) and
qD(αn,l ) satisfy the same type of equation and they are fully uncoupled. Thus,qU or qD can
be found by calling the same subroutine with different coefficientsα in numerical compu-
tations. Fourth, althoughqU or qD appears to be a four-dimensional function(l ; t, x, z), by
careful analysis, only a two-dimensional array is needed, one dimension forx and another
for l (from 1 ton). Sincen does not exceed 20 in numerical computations, memory storage
is saved.

5. ITERATIVE ALGORITHM

Numerical results illustrate that the potentials reconstructed by solving the inverse prob-
lem for the system of coupled one-way wave equations do not have enough accuracy. This is
due to several reasons. First, the system of coupled one-way wave equations are an approx-
imation to the original equation in some sense (see discussion in Section 2). Second, the
responseh(t, x) used in inversion is not the response of a forward problem for the system
of coupled one-way wave equations; thus we cannot expect to obtain an accurate potentialv

fromh by simply solving the coupled system (3.6). Third, the large-time conditions (3.9) are
not accurate (see Remark 2 in Section 3). In this section we construct an iterative algorithm
to improve the inversion accuracy.

For the potentialv(x, z), a response can be obtained by solving the direct problem for
the wave equation (1.1),

h(t, x) = (Av)(t, x). (5.1)

Similarly, by solving the direct problem for the system of coupled one-way wave equations
(3.1), another response can be obtained,

hS(t, x) = (Ãv)(t, x). (5.2)

Generally,A−1 is an unbounded operator, but numerical experiments show that the inverse
problem for (5.2) is well-posed. IfhS(t, x) is known, we can obtain the potential by solving
a well-posed inverse problem,

v(x, z) = (Ã−1hS
)
(x, z). (5.3)

Since

hS(t, x) = h(t, x)− (h(t, x)− hS(t, x)), (5.4)

i.e.,

hS(t, x) = h(t, x)− (Av − Ãv)(t, x). (5.5)
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Given an approximate potential ¯v(x, z), hS(t, x) can be approximately represented as

hS(t, x) ≈ h(t, x)− (Av̄ − Ãv̄)(t, x). (5.6)

From the above heuristic discussion, we construct an iterative algorithm as follows:

Step1. Form= 0, leth0
I = h(t, x), wherem is the index of iteration;

Step2. For the known responsehm
I (t, x), solve the inverse problem for the system of

coupled one-way wave equations (3.6)–(3.8), (3.12), and (3.10),

vm(x, z) = (Ã−1hm
I

)
(x, z); (5.7)

Step3. Compute the direct problem for the wave equation

hm+1
W (t, x) = (Avm)(t, x) (5.8)

and the one-way wave equations,

hm+1
S (t, x) = (Ãvm)(t, x); (5.9)

Step4. If

ε = ∥∥h(t, x)− hm+1
W (t, x)

∥∥ (5.10)

is small enough, stop the iteration; otherwise, go to step 5;
Step5. According to (5.6), compute

hm+1
I (t, x) = h(t, x)− (hm+1

W (t, x)− hm+1
S (t, x)

); (5.11)

Step6. Letm=m+ 1; go to step 2.

Remark. In the iteration,

hm+1
I = h(t, x)− (hm+1

W − ÃÃ−1hm
I

)
. (5.12)

To simplify the computation, if we assume

I = ÃÃ−1, (5.13)

then

hm+1
I = h(t, x)− (hm+1

W − hm
I

) = h(t, x)− (Avm − hm
I

)
. (5.14)

Therefore, we do not need to solve the direct problem for the one-way wave equations, and
some computations are saved. Here we point out that (5.13) is not always true, because,
first, the domain ofÃ−1 is not necessarily equal to the range ofÃ, second, as pointed out
in Section 3, the large-time conditions used for computingÃ−1 (either (3.9) or (3.12)) are
approximate conditions.
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6. NUMERICAL TESTS AND RESULTS

In [13, 28], several numerical tests are presented for the cases,n= 1, 2. In this paper, we
construct the difference scheme for high-order approximations (arbitraryn) for the one-way
wave equations and use the iterative algorithm to get improved inversion results. Numerical
experiments are performed on several examples, and the computed results show that this
method is very effective for certain potential models.

We define

maximum error= maxj,k

∣∣v j
k − v̄ j

k

∣∣
maxj,k

∣∣v j
k

∣∣ , (6.1)

average error=
∑

j,k

∣∣v j
k − v̄ j

k

∣∣
Nx Nz ·maxj,k

∣∣v j
k

∣∣ , (6.2)

wherev is a given potential function and the ¯v are the results of the inversion method. In
all the examples, conditions (3.12) are used instead of (3.9). For simplicity, we use periodic
boundary conditions inx.

EXAMPLE 1. The given potential (Fig. 3a) is

v(x, z) =


1
2

[
1+ cos(10x−15)π

12

]
sin(30z−11)π

8 , x ∈ [ 3
10,

27
10

]
, z∈ [ 11

30,
19
30

]
,

0, otherwise.
(6.3)

It is a smooth function, and the variation along thex-direction is slower than that of the
z-direction. For such a “nice” function we can obtain remarkably good inversion results.
Here, we use three different approximations(n= 2, 5, 10) and show the errors for their
first 20 iterations in Fig. 2. In all the numerical experiments,x ∈ [0, 3], z∈ [0, 1], t ∈ [0, 4],
and the grid numbers in thex, z, andt directions are respectivelyNx = 40, Nz= 80, and
Nt = 160, with1x= 0.075,1= 0.0125. Figure 3 shows the results forn= 10.

From Fig. 2 we see that the inversion accuracy forn= 5, 10 is much better than forn= 2.
Further, we see that for largen, the error of inversion decreases more quickly than for small

FIG. 2. The error of the inversions for different approximate one-way wave equations: left, the average error;
right, the maximum error.
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FIG. 3. (a) the potential in example 1; (b–d) the inversion results for example 1(n= 10): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 25th
iteration.

n during iterations. So we conclude that using higher order approximations for the one-way
wave equations improves inversion results.

To test the numerical stability of the inversion algorithm, Gaussian random noise was
added to the reflection responseh(t, x); see Fig. 4a. The ratio of noise to signal is
‖n(t, x)‖L2/‖h(t, x)‖L2 = 14.4%. The noisy reconstruction is shown in Fig. 4b. The av-
erage error and the maximum error are 0.0197 and 0.0993, respectively. Comparing with
the original potential function in Fig. 3a, we see that the inversion algorithm does not fall
apart even with large amounts of additive noise.

EXAMPLE 2. Let

v∗(x, z) =

[
1+ cos(10x− 15)π

12

] · sin(30z− 11)π
8 , x ∈ [ 3

10,
27
10

]
, z ∈ [ 11

30,
19
30

]
,

0, otherwise,
(6.4)

and

v(x, z) =
{
v∗(x, z), if v∗ < 1,
1, if v∗ ≥ 1.

(6.5)

Note thatv(x, z) is a platform-like function; see Fig. 5a.
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FIG. 4. (a) Noise-contaminated response; (b) reconstructed potential.

FIG. 5. (a) the potential in Example 2; (b–d) the inversion results for Example 2(n= 10): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 20th
iteration.
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FIG. 6. (a) the potential in Example 3; (b–d) the inversion results for example 3(n= 10): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 20th
iteration.

The inversion results are shown in Fig. 5, wherex ∈ [0, 3], z∈ [0, 1], andt ∈ [0, 2.25], the
numbers of grid points areNx = 40, Nz= 40, andNt = 45, and1x= 0.075,1= 0.025, and
n= 10. It was reported in [22] that for such a potential which drops off rapidly to zero in the
deep part, the linearized reconstruction, based on the Born approximation, always has a “tail”
which goes to zero very slowly. This is due to the multiple reflection in the response which
is considered as the primary reflection in the linearized inversion. From Fig. 5, we see that
the reconstructed potential using the layer-stripping algorithm is nearly perfect. The central
“plateau” is well reconstructed and no “tail” is found in the deep part. The average error
and the maximum error for the final reconstruction are 0.00264 and 0.0338, respectively.

EXAMPLE 3. The given potential (see Fig. 6a) is

v(x, z) =


10x− 3

10 , x ∈ [0.3, 1.5], z∈ [0.35, 0.65],

27− 10x
10 , x ∈ [1.5, 2.7], z∈ [0.35, 0.65],

0, otherwise.

(6.7)

For such a potential, we can get good inversion results, and the discontinuity along thez di-
rection can be well reconstructed; see Fig. 6. In computing,x ∈ [0, 3], z∈ [0, 1], t ∈ [0, 2.25],
Nx = 40, Nz= 40, Nt = 45, and1x= 0.075,1= 0.025, n= 10.
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FIG. 7. (a) the potential in Example 4; (b–d) the inversion results for Example 4(n= 10): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 20th
iteration.

EXAMPLES 4 AND 5. For the last two examples, the given potentials are obtained by
rotating the potential in Example 3 by 15◦ and 30◦, respectively. See Fig. 7a and Fig. 8a.
In both examples, the potentials are discontinuous along thez and x directions. The in-
version results are shown in Figs. 7 and 8, and the errors, comparing with that of Ex-
ample 3 can be seen in Fig. 9. Numerical experiments show that the inversion becomes
more difficult when the slope becomes larger. Even for a slope-like potential with small
angle, the inversion will be divergent after several iterations. But if we stop the itera-
tion earlier, reasonably good results can be obtained. In computing for both examples,
x ∈ [0, 3], z∈ [0, 1], t ∈ [0, 2.33], Nx = 30, Nz= 30, Nt = 35,1x= 0.1, 1= 0.033, and
n= 10.

7. CONCLUSIONS

We have developed a method for solving the 2D potential inverse problem. By using the
wave splitting technique, the ill-posed inverse problem for the higher dimensional wave
equation is naturally regularized, so that it can be solved by a layer-stripping algorithm. The
iterative method proposed in Section 5 remarkbly improves the inversion accuracy. From
the numerical experiments, we see that this method is very effective for potential models
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FIG. 8. (a) the potential in Example 5; (b–d) the inversion results for Example 5(n= 10): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 20th
iteration.

whose variation along the reference spatial direction ofz, is greater than that of lateral
directions. This method can also be generalized to solve the 3D case and other kinds of
propagation inverse problems. For example, the coefficient inverse problem of the acoustic
wave equation, whose corresponding inversion formulation is given in [26], may be solved

FIG. 9. The error of the inversions for different slope-like potentials: 0◦ slope (Example 3), “•”; 15◦ slope
(Example 4), “+”; 30◦ slope (Example 5), “*.” Left, the average error; right, the maximum error.
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by this method. Concerning the case of nonimpulsive sources, an inversion method called
characteristic band method has been developed in [30, 14] for the 1D problems, which can
be generalized to the multidimensional cases.

APPENDIX: PROOF OF PROPOSITION 1

By the transformationt = s/
√

1− s2, the left-hand side becomes

1− ξ
2

π

∫ 1

−1

√
1− s2

1− ξs
ds= 1− ξ

2

π

∫ 1

−1

√
1− s2

1− ξ2s2
ds= 2

π

∫ ∞
0

1− ξ2

1+ (1− ξ2)t2
dt.

Let 1− ξ2= rei θ , r ≥ 0, θ ∈ [0, 2π) andq= r 1/2t , then we have

1− ξ
2

π

∫ 1

−1

√
1− s2

1− ξ2s2
ds= 2r 1/2

π

∫ ∞
0

ei θ

1+ ei θq2
dq

= 2r 1/2

π
ei (θ/2) lim

a→+∞

∫ aei (θ/2)

0

d Z

1+ Z2

= 2r 1/2

π
ei (θ/2) lim

a→+∞arctan(Z)

∣∣∣∣aei (θ/2)

Z=0

= r 1/2

π i
ei (θ/2) lim

a→+∞

[
ln

∣∣∣∣ i − Z

i + Z

∣∣∣∣+ i · Arg
i − Z

i + Z

]∣∣∣∣aei (θ/2)

Z=0

= r 1/2 ei (θ/2) =
√

1− ξ2.

This completes the proof.
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